Customer:

Cornbread Hemp

Received Date 6/14/2024 COA Released 6/25/2024

Comments

Sample ID 240614002

Order Number CB240614002

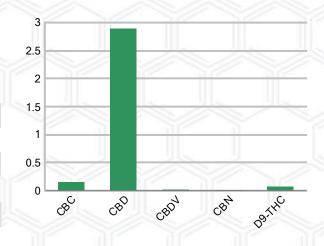
Sample Name **Full Spectrum Watermelon**

CBD Gummies 3000mg

External Sample ID 0958

Batch Number 06132428

Product Type Edible Sample Type Edible


CANNART	NOTD PROFILE	(Product Size = 3.64 g)

CANNABI	NOID PRO	duct Size = 3	3.64 g)	
Analyte	LOQ (%)	% Weight	mg/g	mg/unit
СВС	0.01	0.153	1.527	5.56
CBD	0.01	2.896	28.96	105.40
CBDa	0.01	ND	ND	ND
CBDV	0.01	0.019	0.192	0.70
CBG	0.01	ND	ND	ND
CBGa	0.01	ND	ND	ND
CBN	0.01	0.010	0.105	0.38
d8-THC	0.01	ND	ND	ND
d9-THC	0.01	0.071	0.709	2.58
THCa	0.01	ND	ND	ND
Total Cannabi	noids	3.149	31.49	114.60
Total Potentia	I ТНС	0.071	0.710	2.58
Total Potentia	I CBD	2.896	28.96	105.40
Total Potentia	I CBG	N/A	N/A	ND
Ratio of Total Po	tential CBD to To	tal Potential THC		40.79 : 1

SAMPLE IMAGE

CANNABINOIDS % Weight

Ratio of Total Potential CBG to Total Potential THC

^{*}Total Potential THC/CBD are calculated to take into account the loss of an acid group during decarboxylation.

Laboratory Manager

Jamie Hobgood

06/25/2024 3:16 PM

SIGNATURE

LABORATORY MANAGER

N/A

DATE

This product has been tested by CannaBusiness Laboratories using validated testing methodologies and a quality system. Values reported relate only to the product tested. CannaBusiness Laboratories makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written permission of CannaBusiness Laboratories. Photo is of sample received by the lab and may vary from final packaging. The results apply to the sample as received.

^{*}Total Cannabinoids refers to the sum of all cannabinoids detected.

^{*}Total Potential CBD = (0.877 x CBDa) + CBD. *Total Potential THC = (0.877 x THCa) + THC. *Total Potential CBG = (0.877 x CBGa) + CBG.

Customer

Cornbread Hemp

Sample Name: Full Spectrum

Watermelon CBD

<u>64006</u> Tripes <u>3</u>000mg Sample ID:

Order Number: CB240614002

Product Type: Edible Sample Type: Edible **Received Date: 06/14/2024 Batch Number:** 06132428

Method: CB-SOP-026

COA released: 06/25/2024 3:16 PM

<LOQ

<LOQ

<LOQ

<LOQ

0.100

0.100

0.100

Potency (mg/g)		
Date Tested: 06/21/2024	Method: CB-SOP-028	
Instrument:		

906 %	1		1		
J	3.149 %		31.49 mg/g		
otal CBD	Total C	annabinoids	Total (Cannabinoids	
Res	ult Units	LOQ	Result	Units	
0.15	53 %	0.010	1.527	mg/g	
2.89	96 %	0.010	28.96	mg/g	
NE) %	0.010	ND	mg/g	
0.01	19 %	0.010	0.192	mg/g	
NE	%	0.010	ND	mg/g	
NE	%	0.010	ND	mg/g	
0.01	10 %	0.010	0.105	mg/g	
binol) NE) %	0.010	ND	mg/g	
binol) 0.07	71 %	0.010	0.709	mg/g	
Acid) NE	%	0.010	ND	mg/g	
	0.18 2.89 NE 0.07 NE 0.07 NE binol) 0.07	Total CBD Total C	Total Cannabinoids Result Units LOQ 0.153 % 0.010 2.896 % 0.010 MD % 0.010 MD % 0.010 MD % 0.010 MD % 0.010 MD % 0.010 0.010 % 0.010 binol) ND % 0.010 binol) ND % 0.010 binol) ND % 0.010 binol) 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071	Result Units LOQ Result 0.153 % 0.010 1.527 2.896 % 0.010 28.96 ND % 0.010 ND 0.019 % 0.010 ND ND % 0.010 ND ND % 0.010 ND ND % 0.010 ND binol) ND % 0.010 ND binol) 0.071 % 0.010 0.709	

Instrument:					
Analyte	Result	Unit	LOQ	Result	Unit
alpha-Bisabolol	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
alpha-humulene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
alpha-pinene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
alpha-terpinene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
beta-caryophyllene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Beta-myrcene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Beta-pinene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
cis-Nerolidol	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Camphene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
d-Limonene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
delta-3-Carene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Eucalyptol	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
gamma-Terpinene	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Geraniol	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Guaiol	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Isopulegol	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Linalool	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%
Ocimene (mixture of isomers)	<loq< td=""><td>mg/g</td><td>0.100</td><td><loq< td=""><td>%</td></loq<></td></loq<>	mg/g	0.100	<loq< td=""><td>%</td></loq<>	%

<LOQ

<LOQ

<LOQ

<LOQ

ma/a

mg/g

mg/g

Pesticides					
Date Tested: 06/17/2024	Method: CB-SOP-025	Instrument:			

Terpenoids

Date Tested: 06/17/2024

p-Isopropyltoluene (p-Cymene)

trans-beta-Ocimene

trans-Nerolidol

Terpinolene

Analyte	Result I	Units	LOQ	Result	Analyte	Result U	nits	LOQ	Result
Acephate	ND	ppm	0.010		Acetamiprid	ND	ppm	0.010	
Aldicarb	ND	ppm	0.010		Azoxystrobin	ND	ppm	0.010	
Bifenazate	ND	ppm	0.010		Bifenthrin	ND	ppm	0.100	
Boscalid	ND	ppm	0.010		Carbaryl	ND	ppm	0.010	
Carbofuran	ND	ppm	0.010		Chlorantraniliprole	ND	ppm	0.010	
Chlorpyrifos	ND	ppm	0.010		Clofentezine	ND	ppm	0.010	
Coumaphos		ppm	0.010		Daminozide	ND	ppm	0.010	
Diazinon		ppm	0.010		Dichlorvos	ND	ppm	0.100	
Dimethoate	ND	ppm	0.010		Etofenprox	ND	ppm	0.010	
Etoxazole		ppm	0.010		Fenhexamid	ND	ppm	0.010	
Fenoxycarb	ND	ppm	0.010		Fenpyroximate	ND	ppm	0.010	
Fipronil		ppm	0.010		Flonicamid	ND	ppm	0.100	
Fludioxonil		ppm	0.010		Hexythiazox	ND	ppm	0.010	
lmazalil		ppm	0.010		Imidacloprid	ND	ppm	0.010	
Malathion		ppm	0.010		Metalaxyl	ND	ppm	0.010	

NT = Not tested, ND = Not detected; LOQ = Limit of Quantitation; <LOQ = Detected; >ULOL = Above upper limit of linearity; CFU/g = Colony forming units per 1 gram; TNTC = Too numerous to count

This product has been tested by CannaBusiness Laboratories using validated testing methodologies and a quality system. Values reported relate only to the product tested. CannaBusiness Laboratories makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written permission of CannaBusiness Laboratories. Photo is of sample received by the lab and may vary from final packaging. The results apply to the sample as received.

Pesticides							
Date Tested: 06/17/2024	Method: CB-SOP-025	Instrume	ent:				
Analyte	Result Units	LOQ	Result	Analyte	Result Units	LOQ	Result
Methiocarb	ND ppm	0.010		Methomyl	ND ppm	0.010	
Myclobutanil	ND ppm	0.010		Naled	ND ppm	0.010	
Oxamyl	ND ppm	0.010		Paclobutrazol	ND ppm	0.010	
Phosmet	ND ppm	0.010		Prallethrin	ND ppm	0.010	
Propiconazole	ND ppm	0.010		Propoxur	ND ppm	0.010	
Pyrethrin I	ND ppm	0.010		Pyrethrin II	ND ppm	0.010	
Pyridaben	ND ppm	0.010		Spinetoram	ND ppm	0.010	
Spiromesifen	ND ppm	0.010		Spirotetramat	ND ppm	0.010	
Tebuconazole	ND ppm	0.010		Thiacloprid	ND ppm	0.010	
Thiamethoxam	ND ppm	0.010		Trifloxystrobin	ND ppm	0.010	
Ethoprophos	ND ppm	0.010		Kresoxym-methyl	ND ppm	0.010	
Permethrins	ND ppm	0.010		Piperonyl Butoxide	ND ppm	0.010	
Spinosyn A	ND ppm	0.010		Spiroxamine-1	ND ppm	0.010	
AbamectinB1a	ND ppm	0.010		Spinosyn D	ND ppm	0.010	
Mycotoxins							
Date Tested: 06/17/2024	Method: CB-SOP-025	Instrume	nt:				
Analyte	Result Units	LOQ	Result	Analyte	Result Units	LOQ	Result
Ochratoxin A	ND ppm	0.010		Aflatoxin B1	ND ppm	0.010	
Aflatoxin G2	ND ppm	0.010		Aflatoxin B2	ND ppm	0.010	
Aflatoxin G1	ND ppm	0.010					
Metals							
Date Tested: 06/17/2024	Method: CB-SOP-027	Instrume	nt:				
Analyte	Result Units	LOQ	Result	Analyte	Result Units	LOQ	Result
Arsenic	<loq ppm<="" td=""><td>0.500</td><td></td><td>Cadmium</td><td><loq ppm<="" td=""><td>0.500</td><td></td></loq></td></loq>	0.500		Cadmium	<loq ppm<="" td=""><td>0.500</td><td></td></loq>	0.500	
Lead	<loq ppm<="" td=""><td>0.500</td><td></td><td>Mercury</td><td><loq ppm<="" td=""><td>3.000</td><td></td></loq></td></loq>	0.500		Mercury	<loq ppm<="" td=""><td>3.000</td><td></td></loq>	3.000	
	100				2.5		Alla-
Microbial							
Date Tested: 06/18/2024	Method:	Instrume	nt:				
Analyte	Result Units	LOQ	Result	Analyte	Result Units	LOQ	Result
STEC (E. coli)	Negative			Salmonella	Negative		
L. monocytogenes	Negative			Yeast/Mold (qPCR)	Absence		
, 3	3			. (1 -)			
Residual Solvent							
Date Tested: 06/18/2024	Method: CB-SOP-032	Instrume	nt:				
Analyte	Result Units	LOQ	Result	Analyte	Result Units	LOQ	Result
1-4 Dioxane	<loq ppm<="" td=""><td>29</td><td></td><td>2-Butanol</td><td><loq ppm<="" td=""><td>175</td><td></td></loq></td></loq>	29		2-Butanol	<loq ppm<="" td=""><td>175</td><td></td></loq>	175	
2-Ethoxyethanol	<loq ppm<="" td=""><td>24</td><td></td><td>2-Methylpentane</td><td><loq ppm<="" td=""><td>87</td><td></td></loq></td></loq>	24		2-Methylpentane	<loq ppm<="" td=""><td>87</td><td></td></loq>	87	
3-Methylpentane	<loq ppm<="" td=""><td>87</td><td></td><td>2-Propanol</td><td><loq ppm<="" td=""><td>350</td><td></td></loq></td></loq>	87		2-Propanol	<loq ppm<="" td=""><td>350</td><td></td></loq>	350	
Cyclohexane	<loq ppm<="" td=""><td>146</td><td></td><td>Ether</td><td><loq ppm<="" td=""><td>350</td><td></td></loq></td></loq>	146		Ether	<loq ppm<="" td=""><td>350</td><td></td></loq>	350	
Ethylbenzene	<loq ppm<="" td=""><td>81</td><td></td><td>Acetone</td><td><loq ppm<="" td=""><td>350</td><td></td></loq></td></loq>	81		Acetone	<loq ppm<="" td=""><td>350</td><td></td></loq>	350	
Isopropyl Acetate	<loq ppm<="" td=""><td>175</td><td></td><td>Methylbutane</td><td><loq ppm<="" td=""><td>350</td><td></td></loq></td></loq>	175		Methylbutane	<loq ppm<="" td=""><td>350</td><td></td></loq>	350	
n-Heptane	<loq ppm<="" td=""><td>350</td><td></td><td>n-Hexane</td><td><loq ppm<="" td=""><td>87</td><td></td></loq></td></loq>	350		n-Hexane	<loq ppm<="" td=""><td>87</td><td></td></loq>	87	
n-Pentane	<loq ppm<="" td=""><td>350</td><td></td><td>Tetrahydrofuran</td><td><loq ppm<="" td=""><td>54</td><td></td></loq></td></loq>	350		Tetrahydrofuran	<loq ppm<="" td=""><td>54</td><td></td></loq>	54	
Acetonitrile	<loq ppm<="" td=""><td>123</td><td></td><td>Ethanol</td><td><loq ppm<="" td=""><td>2000</td><td></td></loq></td></loq>	123		Ethanol	<loq ppm<="" td=""><td>2000</td><td></td></loq>	2000	
	<loq ppm<="" td=""><td>175</td><td></td><td>o-Xylene</td><td><loq ppm<="" td=""><td>81</td><td></td></loq></td></loq>	175		o-Xylene	<loq ppm<="" td=""><td>81</td><td></td></loq>	81	
Ethyl acetate	LOQ ppili			O-Mylerie			
m+p-Xylene	<loq ppm<="" td=""><td>163</td><td></td><td>Methanol</td><td><loq ppm<="" td=""><td>250</td><td></td></loq></td></loq>	163		Methanol	<loq ppm<="" td=""><td>250</td><td></td></loq>	250	

NT = Not tested, ND = Not detected; LOQ = Limit of Quantitation; <LOQ = Detected; >ULOL = Above upper limit of linearity; CFU/g = Colony forming units per 1 gram; TNTC = Too numerous to count

This product has been tested by CannaBusiness Laboratories using validated testing methodologies and a quality system. Values reported relate only to the product tested. CannaBusiness Laboratories makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written permission of CannaBusiness Laboratories. Photo is of sample received by the lab and may vary from final packaging. The results apply to the sample as received.

HOBGOOD Laboratory Manager

Jamie Hobgood

06/25/2024 3:16 PM

DATE

SIGNATURE

NT = Not tested, ND = Not detected; LOQ = Limit of Quantitation; <LOQ = Detected; >ULOL = Above upper limit of linearity; CFU/g = Colony forming units per 1 gram; TNTC = Too numerous to count

This product has been tested by CannaBusiness Laboratories using validated testing methodologies and a quality system. Values reported relate only to the product tested. CannaBusiness Laboratories makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written permission of CannaBusiness Laboratories. Photo is of sample received by the lab and may vary from final packaging. The results apply to the sample as received.